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Abstract—The variable preconditioned iterative solver for
linear system obtained by finite element method based on edge
element is numerically investigated. For the high performance
computing, the method is implemented on Graphics Processing
Unit (GPU). The convergence theorem of variable preconditioned
iterative solver is guaranteed that the residual equation for the
preconditioned procedure can be solved in the range of single
precision.

The results of computations show that mixed precision variable
preconditioned GCR method with CR for inner-loop is 5.75 times
faster than that of variable preconditioned CG method on CPU.

I. INTRODUCTION

Recently, the performance of Graphics Processing Unit
(GPU) surpasses that of CPU and various researches of
General Purpose for GPU (GPGPU) have been proposed
aggressively [1]. Furthermore, GPU architectures have been
changed from fixed operation to flexible organization for
programmability; therefore, GPUs are capable of scientific
computing more than the specific graphics operation. For
example, GeForce GTX 285 can perform up to 1063 GFLOPS
by using single precision and 88.6 GFLOPS by using double
precision. However, there are difficult points in operations
using GPU. CUDA is architecture with new hardware and
the software to manage the calculation on GPU as a paral-
lel computer developed by the NVIDIA corporation [2]. In
addition, when CUDA is used, we do not have to move the
data to graphics API. The concept related to the graphics like
the texture memory and the frame buffer, etc. did not worry
when CUDA is used, and it is possible to treat comparatively
with the operation in CPU.

In the discretizing process of magnetostatic problems, the
coefficient matrix of the linear system obtained by Finite
Element Method (FEM) using edge element becomes singular,
symmetric, and large sparse matrix [3]. From this reason,
Incomplete Cholesky Conjugate Gradients method is applied
for the solver of the linear systems [4]. However, it takes much
time to factorize the matrix and it is very difficult to parallelize.

The purpose of the present study is to implement the hybrid
scheme of Variable Preconditioned Krylov subspace method
that uses single precision and double precision operations on
GPU using CUDA and to solve the linear system obtain from
FEM with edge element by means of the code.

Let x0 be an initial guess.
Set r0 = b − Ax0

roughly solve Az0 = r0 using some iterative method
Set p0 = z0

for k = 0, 1, · · · , until ‖rk‖2/‖b‖2 ≤ ε do

αk =
(rk,zk)

(pk, Apk)
xk+1 = xk + αkpk

rk+1 = rk − αkApk

roughly solve Azk+1 = rk+1 using some iterative
method
βk =

(rk+1, zk+1)
(rk, zk)

pk+1 = zk+1 + βkpk

end for
Fig. 1. The algorithm of variable preconditioned conjugate gradient (VPCG)
method.

II. VARIABLE PRECONDITIONED KRYLOV SUBSPACE
METHOD

It is well known that a preconditioning strategy can improve
the performance for solving a linear system Ax = b using
the Krylov subspace method and various preconditioning
strategies have been developed and numerically investigated
[5][6][7][8]. Here, A, x and b denote a coefficient matrix, an
unknown vector, and a known vector, respectively. Generally,
a preconditioned matrix M is determined by incomplete LU
decomposition, and a vector M−1rk is calculated at k-th iter-
ation by using backward substitution or incomplete Cholesky
factorization. Here, rk denotes residual vector at k-th iteration.
The calculation time of solving linear system is relatively large
for the preconditioned part.

K. Abe et al. developed new preconditioning strategy which
is called the variable preconditioning method [9]. VPGCR has
two nested iterations for GCR and variable preconditioning for
GCR are called as outer-loop and inner-loop, respectively. In
the preconditioned procedure, the residual equation is solved to
determine the preconditioner for the outer-loop. The algorithm
of VPGCR can be extended for symmetric matrix solver.
The algorithm of variable preconditioned conjugate method
is shown in Fig. 1.

The convergence theorem of variable preconditioned Krylov
subspace method is guaranteed that the residual of the method
converges if the relative residual norm of inner-loop satisfies
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the following inequality.

rin =
||rk+1 − Azk+1||2

||rk+1||2
< 1. (1)

Here, ||x||2 denotes 2-norm of vector x. That is to say; the
residual equation can be solved roughly by using iterative
method with only a few iteration. Generally, a stationary
iterative method such as Gauss-Seidel method, is adopted for
variable preconditioning procedure.

To elicit the high performance of GPU, it is necessary
to use single precision calculations in a meaningful way
because GPU is developed as a device used for drawing of the
graphics. Additionally, the convergence theorem of variable
preconditioned Krylov subspace method is guaranteed that
the residual equation can be solved in the range of single
precision, which means that the method is applicable method
to elicit the high performance of GPU. Therefore, variable
preconditioned Krylov subspace method with mixed precision
that uses single precision operation for inner-loop and double
precision operation for outer-loop is adopted for the solver on
GPU and the method is called the mixed precision method.

III. NUMERICAL EVALUATION

In this study, the Problem 20 in Testing Electromagnetic
Analysis Methods (T.E.A.M) Workshop is employed for the
benchmark. The analytic region is divied into four symmetric
region, and a piece of the region is adopted for calculation.
The governing equation:

∇×
(

1
µ
∇× A

)
= J , (2)

is discretized by Finite Element Method (FEM) with edge
element. Here, µ, A and J denote a magnetic permeability,
a vector potential, and a current density, respectively. The
size of the analytic domain which is including air region is
0 ≤ x ≤ 0.15, 0 ≤ y ≤ 0.15, and −0.05 ≤ z ≤ 0.20.
Moreover, value of number of node Nnode, number of element
Nelem, number of edge Nedge and degree of freedom N is
Nnode = 98105, Nelem = 535898, Nedge = 649325, N =
603356. Essentially, original problem of T.E.A.M Workshop
problem 20 is a nonlinear magnetostatic field model. For the
simplicity, value of relative magnetic permeability is fixed as
200, and the problem becomes a linear problem. In addition,
coil current is 1000 [A turns]. The evaluation environment
is shown in Table I. Note that, the calculations on CPU are
parallelized in four threads by OpenMP and SIMD (Single
Instruction Multiple data) operation is automatically adopted
on each thread by using compiler option -O3.

We investigate the values CPU time and speedup for various
variable preconditioned Krylov subspace method, and the
results are shown in Table II. The termination condition for
inner-loop εin and for outer-loop εout is fixed as εin = 10−3,
εout = 10−8, respectively. And, VPCG method on CPU with
CG for inner-loop is adopted for the origin of speedup. We
can see from this table the mixed precision methods on GPU
are faster than that of CPU or standard method on GPU in
both cases. Especially, VPGCR method with CR for inner-
loop is 5.75 times faster than that of VPCG method on CPU.

TABLE I
EVALUATION ENVIRONMENT.

OS Ubuntu Linux 9.10
CPU Intel Core i7 930

CPU memory 12 GB
CPU compiler gcc 4.5.0

Compiler option -O3 -march=native
-free-vectorize -fopenmp

GPU GeForce GTX 480
GPU memory 1.5 GB
GPU compiler nvcc 3.1

Compiler option -O -arch=sm_20

TABLE II
THE RESULTS OF EVALUATIONS. HERE, Nmax , τCPU AND M DENOTE

MAXIMUM ITERATION NUMBER FOR INNER-LOOP, CPU TIME AND
NUMBER OF OUTER ITERATION NUMBER, RESPECTIVELY. THE RESTART
PARAMETER FOR GCR AND GMRES IS FIXED AS 100. FURTHERMORE,

THE NAME OF SOLVER IN BRACKET IN SECOND COLUMN DENOTES
ADOPTED SOLVER FOR INNER-LOOP.

PU Method Nmax τCPU [sec] M Speedup
VPCG (CG) 600 201.53 18 1.0

CPU VPGCR (CR) 300 173.65 27 1.16
VPGMRES (CR) 350 182.43 24 1.10

VPCG (CG) 600 53.46 18 3.76
GPU VPGCR (CR) 300 43.98 27 4.58

VPGMRES (CR) 400 45.37 21 4.44
VPCG (CG) 600 41.81 19 4.82

GPU VPGCR (CR) 200 35.01 43 5.75
(Mixed) VPGMRES (CR) 350 35.07 25 5.74

It is notable that VPGCR and VPGMRES are much faster
than VPCG. The number of operations of GCR or GMRES
is larger than that of CG because GCR and GMRES are
solver for asymmetric matrix. This is because both methods are
developed based on Arnoldi process. Therefore, the residual
history is very smooth like a stationary iterative method.

REFERENCES

[1] http://gpgpu.org/
[2] http://www.nvidia.com/object/cuda_develop.html
[3] H. Igarashi, On the Property of the CurlCurl Matrix in FiniteElement

Analysis With Edge Elements, IEEE Trans. Magn., Vol. 37, No. 5 (2001)
3129-3132.

[4] K. Fujiwara, T. Nakata, H. Fusayasu, Acceleration of convergence char-
acteristic of the ICCG method, IEEE Trans. Magn., Vol. 29 No. 2 (1993)
pp.1958-1961.

[5] H. Igarashi, T. Honma, Convergence of Preconditioned Conjugate Gradi-
ent Method Applied to Driven Microwave Problems, IEEE Trans. Magn.,
Vol. 39, No. 3 (2003) 1705-1708.

[6] T. Mifune, T. Iwashita, M. Shimasaki, A Novel Algebraic Multigrid
Preconditioning for Large-Scale Edge-Element Analyses, IEEE Trans.
Magn., Vol. 43, No. 4 (2007) 1481-1484.

[7] H. Igarashi, N. Yamamoto, Effect of Preconditioning in Edge-Based
Finite-Element Method, IEEE Trans. Magn., Vol. 44, No. 6 (2008) 942-
945.

[8] H. Igarashi, N. Yamamoto, Folded Preconditioner: A New Class of
Preconditioners for Krylov Subspace Methods to Solve Redundancy-
Reduced Linear Systems of Equations, IEEE Trans. M agn., Vol. 45, No.
5 (2009) 2068-2071.

[9] K. Abe, S. L. Zhang, A variable preconditioning using the SOR method
for GCR-like methods, Int. J. Numer. Anal. Model. 2, no. 2, pp. 147–161,
2005.

[10] A. Saitoh, A. Kamitani, GMRES With New Preconditioning for Solving
BEM-Type Linear System, IEEE Trans. Magn., Vol. 40, No. 2 (2004)
1084-1087.


